CoxTimeVaryingFitter

class lifelines.fitters.cox_time_varying_fitter.CoxTimeVaryingFitter(alpha=0.05, penalizer=0.0, l1_ratio: float = 0.0, strata=None)

Bases: lifelines.fitters.SemiParametricRegressionFitter, lifelines.fitters.mixins.ProportionalHazardMixin

This class implements fitting Cox’s time-varying proportional hazard model:

\[h(t|x(t)) = h_0(t)\exp((x(t)-\overline{x})'\beta)\]
Parameters:
  • alpha (float, optional (default=0.05)) – the level in the confidence intervals.
  • penalizer (float, optional) – the coefficient of an L2 penalizer in the regression
params_

The estimated coefficients. Changed in version 0.22.0: use to be .hazards_

Type:Series
hazard_ratios_

The exp(coefficients)

Type:Series
confidence_intervals_

The lower and upper confidence intervals for the hazard coefficients

Type:DataFrame
event_observed

The event_observed variable provided

Type:Series
weights

The event_observed variable provided

Type:Series
variance_matrix_

The variance matrix of the coefficients

Type:DataFrame
strata

the strata provided

Type:list
standard_errors_

the standard errors of the estimates

Type:Series
baseline_cumulative_hazard_
Type:DataFrame
baseline_survival_
Type:DataFrame
AIC_partial_

“partial” because the log-likelihood is partial

check_assumptions(training_df: pandas.core.frame.DataFrame, advice: bool = True, show_plots: bool = False, p_value_threshold: float = 0.01, plot_n_bootstraps: int = 15, columns: Optional[List[str]] = None) → None

Use this function to test the proportional hazards assumption. See usage example at https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html

Parameters:
  • training_df (DataFrame) – the original DataFrame used in the call to fit(...) or a sub-sampled version.
  • advice (bool, optional) – display advice as output to the user’s screen
  • show_plots (bool, optional) – display plots of the scaled Schoenfeld residuals and loess curves. This is an eyeball test for violations. This will slow down the function significantly.
  • p_value_threshold (float, optional) – the threshold to use to alert the user of violations. See note below.
  • plot_n_bootstraps – in the plots displayed, also display plot_n_bootstraps bootstrapped loess curves. This will slow down the function significantly.
  • columns (list, optional) – specify a subset of columns to test.
Returns:

Return type:

A list of list of axes objects.

Examples

from lifelines.datasets import load_rossi
from lifelines import CoxPHFitter

rossi = load_rossi()
cph = CoxPHFitter().fit(rossi, 'week', 'arrest')

axes = cph.check_assumptions(rossi, show_plots=True)

Notes

The p_value_threshold is arbitrarily set at 0.01. Under the null, some covariates will be below the threshold (i.e. by chance). This is compounded when there are many covariates.

Similarly, when there are lots of observations, even minor deviances from the proportional hazard assumption will be flagged.

With that in mind, it’s best to use a combination of statistical tests and eyeball tests to determine the most serious violations.

References

section 5 in https://socialsciences.mcmaster.ca/jfox/Books/Companion/appendices/Appendix-Cox-Regression.pdf, http://www.mwsug.org/proceedings/2006/stats/MWSUG-2006-SD08.pdf, http://eprints.lse.ac.uk/84988/1/06_ParkHendry2015-ReassessingSchoenfeldTests_Final.pdf

compute_followup_hazard_ratios(training_df: pandas.core.frame.DataFrame, followup_times: Iterable[T_co]) → pandas.core.frame.DataFrame

Recompute the hazard ratio at different follow-up times (lifelines handles accounting for updated censoring and updated durations). This is useful because we need to remember that the hazard ratio is actually a weighted-average of period-specific hazard ratios.

Parameters:
  • training_df (pd.DataFrame) – The same dataframe used to train the model
  • followup_times (Iterable) – a list/array of follow-up times to recompute the hazard ratio at.
compute_residuals(training_dataframe: pandas.core.frame.DataFrame, kind: str) → pandas.core.frame.DataFrame

Compute the residuals the model.

Parameters:
  • training_dataframe (DataFrame) – the same training DataFrame given in fit
  • kind (string) – One of {‘schoenfeld’, ‘score’, ‘delta_beta’, ‘deviance’, ‘martingale’, ‘scaled_schoenfeld’}

Notes

  • 'scaled_schoenfeld': lifelines does not add the coefficients to the final results, but R does when you call residuals(c, "scaledsch")
fit(df, event_col, start_col='start', stop_col='stop', weights_col=None, id_col=None, show_progress=False, step_size=None, robust=False, strata=None, initial_point=None, formula: str = None)

Fit the Cox Proportional Hazard model to a time varying dataset. Tied survival times are handled using Efron’s tie-method.

Parameters:
  • df (DataFrame) – a Pandas DataFrame with necessary columns duration_col and event_col, plus other covariates. duration_col refers to the lifetimes of the subjects. event_col refers to whether the ‘death’ events was observed: 1 if observed, 0 else (censored).
  • event_col (string) – the column in DataFrame that contains the subjects’ death observation. If left as None, assume all individuals are non-censored.
  • start_col (string) – the column that contains the start of a subject’s time period.
  • stop_col (string) – the column that contains the end of a subject’s time period.
  • weights_col (string, optional) – the column that contains (possibly time-varying) weight of each subject-period row.
  • id_col (string, optional) – A subject could have multiple rows in the DataFrame. This column contains the unique identifier per subject. If not provided, it’s up to the user to make sure that there are no violations.
  • show_progress (since the fitter is iterative, show convergence) – diagnostics.
  • robust (bool, optional (default: True)) – Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. See “The Robust Inference for the Cox Proportional Hazards Model”, Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078
  • step_size (float, optional) – set an initial step size for the fitting algorithm.
  • strata (list or string, optional) – specify a column or list of columns n to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the strata expression in R. See http://courses.washington.edu/b515/l17.pdf.
  • initial_point ((d,) numpy array, optional) – initialize the starting point of the iterative algorithm. Default is the zero vector.
  • formula (str, optional) – A R-like formula for transforming the covariates
Returns:

self – self, with additional properties like hazards_ and print_summary

Return type:

CoxTimeVaryingFitter

fit_right_censoring(*args, **kwargs)

Alias for fit

See also

fit()

hazard_ratios_
log_likelihood_ratio_test()

This function computes the likelihood ratio test for the Cox model. We compare the existing model (with all the covariates) to the trivial model of no covariates.

Conveniently, we can actually use CoxPHFitter class to do most of the work.

plot(columns=None, ax=None, **errorbar_kwargs)

Produces a visual representation of the coefficients, including their standard errors and magnitudes.

Parameters:
  • columns (list, optional) – specify a subset of the columns to plot
  • errorbar_kwargs – pass in additional plotting commands to matplotlib errorbar command
Returns:

ax – the matplotlib axis that be edited.

Return type:

matplotlib axis

plot_covariate_groups(**kwargs)

Deprecated as of v0.25.0. Use plot_partial_effects_on_outcome instead.

predict_log_partial_hazard(X) → pandas.core.series.Series

This is equivalent to R’s linear.predictors. Returns the log of the partial hazard for the individuals, partial since the baseline hazard is not included. Equal to \((x - \bar{x})'\beta\)

Parameters:X (numpy array or DataFrame) – a (n,d) covariate numpy array or DataFrame. If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data.
Returns:
Return type:DataFrame

Note

If X is a DataFrame, the order of the columns do not matter. But if X is an array, then the column ordering is assumed to be the same as the training dataset.

predict_partial_hazard(X) → pandas.core.series.Series

Returns the partial hazard for the individuals, partial since the baseline hazard is not included. Equal to \(\exp{(x - \bar{x})'\beta }\)

Parameters:X (numpy array or DataFrame) – a (n,d) covariate numpy array or DataFrame. If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data.
Returns:
Return type:DataFrame

Note

If X is a DataFrame, the order of the columns do not matter. But if X is an array, then the column ordering is assumed to be the same as the training dataset.

print_summary(decimals=2, style=None, columns=None, **kwargs)

Print summary statistics describing the fit, the coefficients, and the error bounds.

Parameters:
  • decimals (int, optional (default=2)) – specify the number of decimal places to show
  • style (string) – {html, ascii, latex}
  • columns – only display a subset of summary columns. Default all.
  • kwargs – print additional meta data in the output (useful to provide model names, dataset names, etc.) when comparing multiple outputs.
summary

Summary statistics describing the fit.

Returns:df – Contains columns coef, np.exp(coef), se(coef), z, p, lower, upper
Return type:DataFrame